Equivalent fractions (1)

1 Shade the bar models to represent the fractions.
 a) Shade \(\frac{1}{2} \) of the bar model.

 [Diagram of a bar model with \(\frac{1}{2} \) shaded]

 b) Shade \(\frac{2}{4} \) of the bar model.

 [Diagram of a bar model with \(\frac{2}{4} \) shaded]

What do you notice?

2 Complete the equivalent fractions.
 a) \(\frac{1}{2} = \frac{4}{8} \)

 [Diagram of a bar model with \(\frac{1}{2} \) shaded]

 b) \(\frac{1}{4} = \frac{2}{8} \)

 [Diagram of a bar model with \(\frac{1}{4} \) shaded]

3 Shade the bar models to represent the equivalent fractions.
 a) \(\frac{1}{3} = \frac{2}{6} \)

 [Diagram of a bar model with \(\frac{1}{3} \) shaded]

 b) \(\frac{2}{3} = \frac{4}{6} \)

 [Diagram of a bar model with \(\frac{2}{3} \) shaded]

 c) \(\frac{1}{3} = \frac{3}{9} \)

 [Diagram of a bar model with \(\frac{1}{3} \) shaded]

 d) \(\frac{2}{3} = \frac{6}{9} \)

 [Diagram of a bar model with \(\frac{2}{3} \) shaded]

Can you find any more equivalent fractions using the bar models?

© White Rose Maths 2020
4 Match each bar model to its equivalent fraction.

\[
\begin{align*}
\frac{1}{2} & \quad \text{\(\square\)} \\
\frac{1}{3} & \quad \text{\(\square\)} \\
\frac{1}{4} & \quad \text{\(\square\)} \\
\frac{1}{8} & \quad \text{\(\square\)}
\end{align*}
\]

5 Shade the bar models to complete the equivalent fractions.

\begin{align*}
a) & \quad \frac{1}{2} = \frac{6}{12} \\
\text{Shade the bar models to support your answers.}
\end{align*}

6 The bar models represent fractions.

\[
\begin{align*}
A & \quad \text{\(\square\)} \\
B & \quad \text{\(\square\)} \\
C & \quad \text{\(\square\)} \\
D & \quad \text{\(\square\)}
\end{align*}
\]

Which is the odd one out? \(\boxed{\text{B}}\)
Why do you think this?

7 This bar model represents \(\frac{3}{4}\).

\[
\begin{align*}
\text{Tick the bar models that can be used to show a fraction that is equivalent to \(\frac{3}{4}\)}
\end{align*}
\]

Talk to a partner about your answers.

© White Rose Maths 2020