How to use the mixed-age SOL

In this document, you will find suggestions of how you may structure a progression in learning for a mixed-age class.

Firstly, we have created a yearly overview.

<table>
<thead>
<tr>
<th>Autumn</th>
<th>Winter</th>
<th>Spring</th>
<th>Summer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number: Place Value</td>
<td>Number: Addition and Subtraction</td>
<td>Number: Place Value to 50, Multiplication</td>
<td>Geometry: Year 1: Shape and Volume</td>
</tr>
<tr>
<td>Y1: Numbers to 20, Year 1: Numbers within 20 (including recognising money)</td>
<td>Year 2: Numbers within 100 (including money)</td>
<td>Year 1: Place Value to 100, Year 2: Fractions</td>
<td></td>
</tr>
<tr>
<td>Week 1, Week 2, Week 3, Week 4</td>
<td>Week 5, Week 6, Week 7, Week 8</td>
<td>Week 9, Week 10, Week 11, Week 12</td>
<td>Measurement: Time</td>
</tr>
<tr>
<td>Measurement: Length</td>
<td>Year 2: Statistics</td>
<td>Year 1: Fractions and Consolidation</td>
<td>Year 1: Place Value</td>
</tr>
<tr>
<td>Problem solving and efficient methods</td>
<td>Year 2: Properties of Shape</td>
<td>Year 2: Fractions</td>
<td>Year 2: Mass, Capacity and Temperature</td>
</tr>
<tr>
<td>Measurement: Volume</td>
<td>Consolidation and Investigations</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Each term has 12 weeks of learning. We are aware that some terms are longer and shorter than others, so teachers may adapt the overview to fit their term dates.

The overview shows how the content has been matched up over the year to support teachers in teaching similar concepts to both year groups. Where this is not possible, it is clearly indicated on the overview with 2 separate blocks.

For each block of learning, we have grouped the small steps into themes that have similar content. Within these themes, we list the corresponding small steps from one or both year groups. Teachers can then use the single-age schemes to access the guidance on each small step listed within each theme.

The themes are organised into common content (above the line) and year specific content (below the line). Moving from left to right, the arrows on the line suggest the order to teach the themes.
Notes and Guidance

How to use the mixed-age SOL

Here is an example of one of the themes from the Year 1/2 mixed-age guidance.

Subtraction

<table>
<thead>
<tr>
<th>Year 1 (Aut B2, Spr B1)</th>
<th>Year 2 (Aut B2, B3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>How many left? (1)</td>
<td>Subtract 1-digit from 2-digits</td>
</tr>
<tr>
<td>How many left? (2)</td>
<td>Subtract with 2-digits (1)</td>
</tr>
<tr>
<td>Counting back</td>
<td>Subtract with 2-digits (2)</td>
</tr>
<tr>
<td>Subtraction - not crossing 10</td>
<td>Find change - money</td>
</tr>
<tr>
<td>Subtraction - crossing 10 (1)</td>
<td></td>
</tr>
<tr>
<td>Subtraction - crossing 10 (2)</td>
<td></td>
</tr>
</tbody>
</table>

In order to create a more coherent journey for mixed-age classes, we have re-ordered some of the single-age steps and combined some blocks of learning e.g. Money is covered within Addition and Subtraction.

The bullet points are the names of the small steps from the single-age SOL. We have referenced where the steps are from at the top of each theme e.g. Aut B2 means Autumn term, Block 2. Teachers will need to access both of the single-age SOLs from our website together with this mixed-age guidance in order to plan their learning.

Points to consider

- Use the mixed-age schemes to see where similar skills from both year groups can be taught together. Learning can then be differentiated through the questions on the single-age small steps so both year groups are focusing on their year group content.
- When there is year group specific content, consider teaching in split inputs to classes. This will depend on support in class and may need to be done through focus groups.
- On each of the block overview pages, we have described the key learning in each block and have given suggestions as to how the themes could be approached for each year group.
- We are fully aware that every class is different and the logistics of mixed-age classes can be tricky. We hope that our mixed-age SOL can help teachers to start to draw learning together.
In this section, content from single-age blocks are matched together to show teachers where there are clear links across the year groups. Teachers may decide to teach the lower year’s content to the whole class before moving the higher year on to their age-related expectations. The lower year group is not expected to cover the higher year group’s content as they should focus on their own age-related expectations.

In this section, content that is discrete to one year group is outlined. Teachers may need to consider a split input with lessons or working with children in focus groups to ensure they have full coverage of their year’s curriculum. Guidance is given on each page to support the planning of each block.

The themes should be taught in order from left to right.
<table>
<thead>
<tr>
<th>Week 1</th>
<th>Week 2</th>
<th>Week 3</th>
<th>Week 4</th>
<th>Week 5</th>
<th>Week 6</th>
<th>Week 7</th>
<th>Week 8</th>
<th>Week 9</th>
<th>Week 10</th>
<th>Week 11</th>
<th>Week 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autumn</td>
<td></td>
</tr>
<tr>
<td>Number: Place Value</td>
<td>Number: Addition and Subtraction</td>
<td>Number: Number: Year 1: Place Value to 50 and Year 2: Multiplication</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y1 – Numbers to 20</td>
<td>Year 1- Numbers within 20 (including recognising money)</td>
<td>Year 1: Place Value to 100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y2 – Numbers to 100</td>
<td>Year 2- Numbers within 100 (including money)</td>
<td>Year 1: Fractions and Consolidation Year 2: Fractions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Number: Year 2: Fractions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td></td>
</tr>
<tr>
<td>Number: Year 1: Division & consolidation Year 2: Division</td>
<td>Year 1: Place Value to 100</td>
<td>Measurement: Length and Height</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Year 2: Statistics</td>
<td>Geometry: Year 1: Shape and Consolidation Year 2: Properties of Shape</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Number: Year 1: Fractions and Consolidation Year 2: Fractions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Consolidation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Summer</td>
<td></td>
</tr>
<tr>
<td>Geometry: Position and Direction</td>
<td>Measurement: Time</td>
<td>Measurement: Year 1: Weight and Volume Year 2: Mass, Capacity and Temperature</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Year 1: Place Value recap</td>
<td>Year 1: Four Operations recap Year 2: Consolidation and Investigations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Year 2: Problem solving</td>
<td></td>
</tr>
</tbody>
</table>

©White Rose Maths
Common Content

Equal groups
Year 1 (Sum B1)
- Make equal groups
- Add equal groups

Year 2 (Aut B4)
- Recognise equal groups
- Make equal groups
- Add equal groups
- The Multiplication symbol
- Multiplication from pictures

Arrays
Year 1 (Sum B1)
- Make arrays
- Make doubles

Year 2 (Aut B4)
- Use arrays

Counting in multiples
Year 1 (Sum B1, B5)
- Count in 2s
- Count in 5s
- Count in 10s
- Counting in coins

Year 2 (Aut B1, B3)
- Count in 2s, 5s and 10s
- Count in 3s
- Count money - pence
- Count money - pounds

Numbers to 50
Year 1 (Spr B2)
- Numbers to 50
- Tens and Ones
- Represent numbers to 50
- One more one less
- Compare objects within 50
- Compare numbers within 50
- Order numbers within 50

In this block, there is a clear split in content with Year 1 looking at numbers to 50 discretely. Teachers may decide to recap numbers to 100 with Year 2 before moving on to multiplication as a group.

Counting in multiples could be used as starters in lessons as both year groups have very similar content. Having looked at the structure of multiplication, Year 2 can then practise times tables on a daily basis.

Both year groups look at equal groups and arrays and describe them using repeated addition. Year 2 are then introduced to the multiplication symbol.

Times-tables
Year 2 (Aut B4)
- 2 times-table
- 5 times-table
- 10 times-table
Numbers to 50

Notes and Guidance

Children count forwards and backwards within 50. They use a number track to support where needed, in particular crossing the tens boundaries and with teen numbers. Children build on previous learning of numbers to 20. They learn about grouping in 10s and their understanding of 1 ten being equal to 10 ones is reinforced.

Varied Fluency

Use the number track to
• count forwards from 35 to 49
• count back from 46 to 38

| 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 |

Can you count from ___ to ___ without a number track?

These images both show the same number of counters. Which counters are easier to count? Why?

Mathematical Talk

How can we count a larger number of objects more easily?

What happens when we get to 10? 20? 30?

___ ones make ___ ten.

How many groups of 10 can we see in the number ___?

Which practical equipment is best for showing groups of 10?
Numbers to 50

Reasoning and Problem Solving

Annie counts how many muffins she has.

Possible answer: I do not agree with Annie because she has counted 30 twice. There should be 36 muffins.

Do you agree with Annie?

Explain your answer.

Eva is counting from 38 to 24.

Will she say the number 39?

Will she say the number 29?

Will she say the number 19?

Explain how you know.

Ron and Whitney are counting.

Ron says:

43, 42, 41, 40, 41, 42

Whitney writes:

Can you spot their mistakes?

Eva will not say 39 or 19 because they are not between 38 and 24.

She will say 29.

Children could show this on a number track.

Ron has started counting up after 40 when he should have continued counting back.

Whitney has also written 41 instead of 14. She has reversed her digits.
Tens and Ones

Notes and Guidance

Children use practical equipment to represent numbers to 50. They continue to build their understanding that ten ones can be grouped into one ten. They need to practice grouping equipment into tens themselves (straws, cubes, lolly sticks, 10 frames) before introducing ready made tens or place value counters.

It is important that children understand how a number is made up of tens and ones, e.g. 34 = 3 tens and 4 ones.

Mathematical Talk

How many have we got? How can we make them easier to count?
How many tens are there?
How many ones are there?
I have ___ tens and ___ ones. What number does that make?
How do we record this number in words?

Varied Fluency

- Count out 23 straws. How many bundles of 10 can you make?
 - There are ___ tens and ___ ones.
 - ___ tens + ___ ones = 23

- What number is represented in the grid?
 - There are ___ tens and ___ ones.
 - ___ tens + ___ ones = ___

- Match the pictures and words.
 - Four tens and three ones
 - Two tens and five ones
 - Three tens and four ones
 - Three ones and five tens
Tens and Ones

Reasoning and Problem Solving

The children are completing the part whole models.

Tommy is wrong. He has wrote 3 which should be 30 or 3 tens.

Rosie is correct – she has just recorded the ones first.

Jack is correct. \(10 + 10 = 20 \) Two tens is the same as twenty.

Dora and Amir both try to build the same number.

Amir is correct.

Dora has got mixed up with tens and ones and shown 4 ones and 2 tens (24).

Who is correct?

Can you explain the mistake that has been made?
Represent Numbers to 50

Notes and Guidance

Children continue to represent numbers to 50 using a variety of concrete materials.

Children should continue to see the groups of tens and ones in each number to support their understanding of place value.

Varied Fluency

Complete the table.

<table>
<thead>
<tr>
<th>Number</th>
<th>Tens and Ones</th>
<th>Ten Frame</th>
<th>Straws</th>
<th>Words</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>2 tens 6 ones</td>
<td></td>
<td></td>
<td>Twenty-six</td>
</tr>
<tr>
<td></td>
<td>___ tens ___ ones</td>
<td></td>
<td></td>
<td>Thirty</td>
</tr>
<tr>
<td></td>
<td>___ tens ___ ones</td>
<td></td>
<td></td>
<td>Seventeen</td>
</tr>
</tbody>
</table>

How many different ways can you represent the following numbers?

Here is an example for 25

- 34
- 28
- 40
- 16

Mathematical Talk

Which digit represents the tens?
Which digit represents the ones?
What do you notice about the numbers 30, 40, 50?
How many tens are there? How many ones?
How do we say/write/represent/partition this number?
What's the same about your representations? What's different?
Represent Numbers to 50

Reasoning and Problem Solving

Sort the representations into two groups.

Children sort the representations into those which show 23 and those which show 32.

23

Three tens and 2 ones

Twenty and three

Explain how you have sorted them.

Can you add your own representations?

Whitney says,

I have 2 tens and 14 ones.

How many straws does Whitney have?

Whitney has 34
She could also make 3 groups of ten and four ones.
One More One Less

Notes and Guidance

Children find one more and one less than given numbers up to 50. Children build numbers concretely before using number tracks and 1–50 grids. As they have already found one more and one less within 10 and 20, they should be able to use this knowledge with larger numbers. Encourage them to notice that it is the ones column that changes most of the time apart from when the ones number is a nine. If they know that 8 is one more than 7 then they also know that 48 is one more than 47.

Mathematical Talk

How many do we have? What number does this represent? What would be the number after/before...? What is one more/one less than...? When finding one more and one less, which digit changes? Why? Does this always happen?

Varied Fluency

- Fill in the blanks:
 There are ___ donuts. One more than ___ is ___
 There are ___ donuts. One less than ___ is ___

- Build and find one more and one less.
 One more than ___ is ___
 One less than ___ is ___

- Find one more and one less:
 One more than ___ is ___
 One less than ___ is ___
 One more than ___ is ___
 One less than ___ is ___
 One more than ___ is ___
 One less than ___ is ___
 One more than ___ is ___
 One less than ___ is ___
 One more than ___ is ___
 One less than ___ is ___
One More One Less

Reasoning and Problem Solving

Always, sometimes, never...

- **When you find one more than a number, only the ones digit will change.**
 - Convince me using some examples.

Sometimes.
- One more than 19 is 20
- The tens and ones digit has changed.
- One more than 24 is 25
- Only the ones has changed.

Use the clues to work out the number.
- I have a number with 3 tens.
- One less than my number makes the tens digit change.
- One more than my number has 1 one.
 - What is my number?
 - Can you make some clues to describe your secret number?

Choose the correct numbers to make the sentences correct.

<table>
<thead>
<tr>
<th>28</th>
<th>26</th>
<th>33</th>
<th>45</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>43</td>
<td>35</td>
<td>49</td>
</tr>
</tbody>
</table>

- [] is one less than 27
- 34 is one less than []
- [] is one more than 44
- 50 is one more than []
Compare Objects within 50

Notes and Guidance

Children compare two sets of objects using the language ‘more than’, ‘less than’ and ‘equal to’. Children also use the inequality symbols to compare the sets of objects.

If children are struggling to understand how to use the inequality symbols a visual may help them, for example,

![Visual aid for comparison]

Mathematical Talk

How could we arrange the objects to help us compare them?

What do <, > and = mean?

How do you know you have more or less?

Can you record your ideas in a different way?

Varied Fluency

Teddy and Eva each have some muffins. Who has more muffins? Which picture helps you to compare?

___ is more than ___
___ > ___
______ has more muffins.

Fill in the blanks:

![Visual aid for comparison]

Complete each box using <, > or =

Say and write the number sentences for each one.

<table>
<thead>
<tr>
<th>Teddy</th>
<th>Eva</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 tens and 8 ones</td>
<td>3 tens and 6 ones</td>
</tr>
</tbody>
</table>
Compare Objects within 50

Reasoning and Problem Solving

Jack and Eva are playing a game. They each collect a handful of cubes. They arrange their cubes to see who has more.

Jack says: I have more.

Jack looks like he has more but his cubes are spread out. Eva has more.

This illustrates the importance of lining up the objects carefully when comparing.

Eva says: I have more.

Who is right? Practise comparing objects with your friend.

Dexter compares two numbers.

30 is less than 33

Do you agree with Dexter? Explain your answer.

Dexter is correct but he has used the wrong symbol.

Pick a card. < > =

Draw pictures in the boxes to make the comparison true.

Encourage children to use the correct language of ‘more than’, ‘less than’ or ‘equal to’
Compare Numbers within 50

Notes and Guidance

Building on previous learning of comparing practical objects within 50, children now compare two numbers within 50 using the inequality symbols.

Children continue to use the language ‘more than’, ‘less than’ and ‘equal to’ alongside the correct symbols to compare numbers.

Mathematical Talk

Which number is more? Which is less?

What could we use to represent the numbers?

What do <, > and = mean?

How do you know you have more or less?

What could you use to help you compare?

Varied Fluency

Use the number track to compare the two numbers using words and inequality symbols.

<table>
<thead>
<tr>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
<th>25</th>
<th>26</th>
<th>27</th>
<th>28</th>
<th>29</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>30</td>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td>37</td>
<td>38</td>
<td></td>
</tr>
</tbody>
</table>

21 is _______ than 26

26 is _______ than 21

21 __ 26

26 __ 21

Use the 1-50 grid to compare the numbers.

12 __ 21

38 __ nineteen

40 __ 39 + 1

Use a number line or 1-50 grid to compare:

fifteen __ 50

28 __ 29

48 __ 39

2 tens __
Compare Numbers within 50

Reasoning and Problem Solving

Teddy is comparing two numbers.

Teddy’s number could be 21 or 22
It can’t be 20 as this is one more than 19

23 > □

What could Teddy’s number be?
What can’t it be?

Dora compares the two values.

23 < □

Dora could change 23 = 2 tens and 3 ones or 33 = 3 tens and 3 ones.

Change one thing in the values so they are equal.

Pick two dominoes to represent two two-digit numbers.
For example,
43

21

Then compare them using <, > or =
43 > 21 21 < 43
Explain how you know.

Children could do this with a partner.
Possible response: 43 is larger than 21 as it has more tens.
Order Numbers within 50

Notes and Guidance

Children order numbers using the language ‘largest’, ‘smallest’, ‘more than’, ‘less than’, ‘least’, ‘most’ and ‘equal to’. They continue to use inequality symbols to order numbers in ascending and descending order.

Children should be able to justify the order of numbers using their place value knowledge. They need to know that they should compare the highest place value column first (tens), then move onto the ones if the tens are equal.

Mathematical Talk

Which group has the most? Which group has the least?
How does knowing this help us order the groups from largest to smallest?

Can you build the groups using equipment and compare?

What is the smallest/largest number that could complete the empty box?

Varied Fluency

Order the groups of cubes from smallest to largest.

Order the base 10 from smallest to largest:

Using base 10, build and order from largest to smallest:
• 23, 49, 19
• 11, 33, 22
• 41, 14, 42, 24

Use the four numbers to complete the statement.

<table>
<thead>
<tr>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
</tr>
<tr>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td>37</td>
<td>38</td>
<td>39</td>
<td>40</td>
</tr>
</tbody>
</table>
Order Numbers within 50

Reasoning and Problem Solving

Spot the Mistake

12 > 21 > 33 > 35

The wrong inequality symbol has been used. It should be 12 < 21 < 33 < 35 or 35 > 33 > 21 > 12

Can you correct it?

Find at least 5 different numbers that could complete the statement.

Find at least 5 different numbers that could complete the statement.

Any number from 27 to 40

Alex has this abacus.

She uses 6 discs on each empty abacus. Her numbers must have some tens and some ones. Draw on the abacus what her numbers could be.

Can you find more than one answer?

51 > 34 > 33
51 > 34 > 24
51 > 34 > 15
42 > 34 > 33
42 > 34 > 24
42 > 34 > 15
Count in 2s

Notes and Guidance

Children build on their previous knowledge of counting in multiples of 2 and go beyond 20 up to 50.

They will apply previous learning of one more and one less to counting forwards and backwards in twos. For example, two more than and two less than. The 1-50 grid can be used to spot and discuss patterns that emerge when counting in 2s.

Mathematical Talk

How can we count the pairs?
What does it mean to count in pairs?

Can we use tens frames to help us count in 2s?
Can you see any patterns when you count in 2s?

Varied Fluency

How many socks are there?

There are ___ socks in total.

How many gloves are there?

There are ___ gloves in total.
Represent the gloves using ten frames.

Continue colouring in 2s on the grid. What do you notice?

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
</tr>
<tr>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td>37</td>
<td>38</td>
<td>39</td>
<td>40</td>
</tr>
<tr>
<td>41</td>
<td>42</td>
<td>43</td>
<td>44</td>
<td>45</td>
<td>46</td>
<td>47</td>
<td>48</td>
<td>49</td>
<td>50</td>
</tr>
</tbody>
</table>

Complete the number lines by counting in 2s.
Count in 2s

Reasoning and Problem Solving

Count in 2s backwards to complete the number track.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>40</th>
<th>42</th>
<th>44</th>
<th>46</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>2 less</td>
<td>2 less</td>
<td>2 less</td>
<td>2 less</td>
</tr>
</tbody>
</table>

If you continue counting, will you say the number 25?

Always, sometimes, never...

When you count in twos, your digits will be 0, 2, 4, 6, 8

Prove it!

38, 36, 34
Possible answer: Children will not say 25 because it is not a multiple of 2, they will say 28, 26, 24 and 22

Rosie counts back from 50 in 2s.
Amir counts up from 12 in 2s.

50, 48, 46, 44...

12, 14, 16...

Sometimes. It depends on your starting number. For example 1, 3, 5...
Also for 12, 14, 16, the tens digit is 1

They say their numbers together. Who will say 30 first.

Rosie says 11 numbers to reach 30
Amir says 10 numbers to reach 30
So Amir will get there first.
Count in 5s

Notes and Guidance

Children build on previous learning of counting in fives to go beyond 20 and up to 50.

The 1-50 grid can be used to spot and discuss patterns that emerge when counting in 5s.

Mathematical Talk

How can we count the groups of 5?

Can you describe the pattern when you count in 5s?

Will ____ appear on our number line? Why/why not?

Varied Fluency

How many fish are there?

There are ___ fish in each tank.
There are ___ tanks.
There are ___ fish altogether.

How many grapes are there?

There are ___ grapes in each bunch.
There are ___ bunches.
There are ___ grapes altogether.

Continue counting in 5s on the grid.

Complete the number lines by counting in 5s.
Count in 5s

Reasoning and Problem Solving

<table>
<thead>
<tr>
<th>Amir is making this flower pattern with counters.</th>
<th>Annie is wrong because 43 does not end in a 5 or a 0.</th>
<th>Annie is wrong because 43 does not end in a 5 or a 0.</th>
</tr>
</thead>
<tbody>
<tr>
<td>If you make 9 flowers, you will use 43 counters.</td>
<td>If she makes 9 flowers she will use 45 counters.</td>
<td></td>
</tr>
</tbody>
</table>

Do you agree with Annie? Explain your answer.

Odd One Out

<table>
<thead>
<tr>
<th>25</th>
<th>30</th>
<th>27</th>
<th>45</th>
</tr>
</thead>
</table>

Which is the odd one out? Explain your answer.

27 because you would not count it if you were counting in 5s. Children also may give other responses.

Work in groups. Create a circle with your hands. You can choose to put in one hand or both hands.

Count how many fingers and thumbs you can see altogether.

Can you predict how many? Count to check.

Children can practise counting in 5s and recognise one hand is worth 5. They may start to spot patterns and reason about how many there will be.
Count in 10s

Notes and Guidance

Children count in groups of tens for the first time. Previously they have counted in 2s and 5s. They use pictures, bead strings and number lines to support their counting.

Counting in 10s on a hundred square will also support children to see the similarities between the numbers when we count in tens.

Mathematical Talk

How many birds/flowers are there in total?

How can we use our number lines to help us count them?

Will _____ appear on our number line? Why?

What is the same about all the numbers we say when we are counting in tens?

Varied Fluency

How many birds are there altogether?

There are ____ birds in each tree.
There are ____ trees.
There are ____ birds altogether.

How many flowers are there altogether?

There are ____ flowers in each bunch.
There are ____ bunches.
There are ____ flowers altogether.

Use a 0-100 bead string to count in tens.
Can we count forwards and backwards in tens? ______

Can we count in tens on a number track as well? How does this match counting on a bead string?
Count in 10s

Reasoning and Problem Solving

In a shop, grapes come in bunches of 10

Max wants to buy forty grapes.

Are there enough grapes?

Yes there are enough grapes. There are fifty grapes and Max only needs forty.

Jemima is counting in 10s on part of a hundred square.

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
</tr>
<tr>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td>37</td>
</tr>
<tr>
<td>41</td>
<td>42</td>
<td>43</td>
<td>44</td>
<td>45</td>
<td>46</td>
<td>47</td>
</tr>
</tbody>
</table>

She starts at 10

Shade in all the numbers Jemima will say.

What is the same about the numbers she says?

What is different about the numbers?

Jemima will say 10, 20, 30, 40 and 50

All the numbers have the same ones digit (0)

They all have different tens digit. The tens digit goes up by 1 for each new number she says.
Counting in Coins

Notes and Guidance

Children combine their knowledge of money with counting in 2s, 5s and 10s to count money efficiently.

They may draw coins or representations to match a given amount and use previous understanding to compare amounts of money.

Mathematical Talk

Can two people have the same amount of money, with a different number of coins?

Is the largest amount of coins always the largest amount of money? Can you prove it?

Is there one way, or more than one way?

Varied Fluency

- Using coins children make links to times tables. What do they notice?

- Use or draw coins to show the given amounts.
 - 10p in 5p coins.
 - 50p in 5p coins.
 - 50p in 10p coins.
 - 40p in 5p coins.

- Use <, > or = to compare the amounts.
Tommy’s piggy bank is full of 2 pence pieces, 5 pence pieces and 10 pence pieces.
Using one type of coin at a time, how can he make 30 p?

Five 2 pence pieces equal 30 p.
Six 5 pence pieces equal 30 p.
Three 10 pence pieces equals 30 p.

Alex has 2 silver coins.
Teddy has 5 bronze coins.
Amir has 1 silver coin.

They all have the same amount of money. Which coins do they each have?
Collect or draw the coins to prove it.

Are there any other amounts that this works for?

Alex has two 5 pence coins.
Teddy has five 2 pence coins.
Amir has one 10 pence coin.

You could have two 10 pence coins making 20 pence and one 20 pence coin but there are not 5 bronze coins which make 20 pence.
Count in 2s, 5s and 10s

Notes and Guidance

Children count forwards and backwards in 2s, 5s and 10s. It is important that children do not always start from zero, however they should start on a multiple of 2 or 5 when counting in 2s and 5s but can start from any number when counting in 10s. For example when counting in 2s they should not start at 3. Encourage children to look for patterns as they count.

Mathematical Talk

What do you notice? Are the numbers getting larger or smaller?

Are the numbers getting bigger or smaller each time? By how many?

Can you spot a pattern?

Why is it the odd one out? Can you correct the mistake?

Varied Fluency

- Continue each number sequence.
 - Continue each number sequence.

- Circle the odd one out in each number sequence.
 - Circle the odd one out in each number sequence.
 - 2, 4, 6, 8, 9, 10, 12, …
 - 0, 5, 10, 20, 30, 40, …
 - 35, 30, 25, 20, 12, 10, …

- Count forwards and backwards in jumps of 10 from fifty-seven.
Count in 2s, 5s and 10s

Reasoning and Problem Solving

Eva says,

If you count in 5s from any number in the five times table, your numbers will end in 5 or 0

Do you agree with Eva?

Prove it.

Agree.
Each number in the 5 times table does end in a 5 or 0
5, 10, 15, 20, 25, 30, 35, 40, 45, 50 etc.

Always, Sometimes, Never

- When counting in 2s from zero the numbers are even.
- When counting in 5s from zero the numbers are even.
- When counting in 10s from zero the numbers are even.

Teddy and Whitney are both counting from zero to twenty.

- Teddy is counting in 2s.
- Whitney is counting in 5s.

Will they say any of the same numbers? What do you notice about your answer?

- Always
- Sometimes
- Always

Yes they will both say 10 and 20

The numbers that are the same are the tens.
Count in 3s

Notes and Guidance

Children count forwards and backwards in 3s from any multiple of 3.

Encourage children to look for patterns as they count and use resources such as a number track, a counting stick and concrete representations.

Mathematical Talk

What do you notice about the numbers?

Are the numbers in the sequence getting larger or smaller?

Can you spot a pattern?

What are you counting up in?

Varied Fluency

What do you notice about the numbers that are circled? Continue the pattern.

Complete the number sequences.

Amir has 15 stickers. He collects 3 more each day. Complete the number track to show how many he will have in six days.
Count in 3s

Reasoning and Problem Solving

True or False?

I start at 0 and count in 3s I say the number 14

False. If I count in 3s I say 3, 6, 9, 12, 15,...

Explain your answer.

Teddy is counting in 2s and Jack is counting in 3s.

<table>
<thead>
<tr>
<th>Teddy</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jack</td>
<td>3</td>
<td>6</td>
<td>9</td>
<td>12</td>
</tr>
<tr>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Teddy says, If we add our numbers together as we count we can make a new number pattern.

What pattern do they make? What happens if both Teddy and Jack count in 5s and they add them together to make a new pattern?

If Teddy and Jack add their numbers together they will be counting in 5s.

If Teddy and Jack both count in 5s their new pattern would be counting in 10s.
Count Money - Pence

Notes and Guidance

This block introduces the £ and p symbols for the first time.

Children will count in 1 p, 2 p, 5 p and 10 p coins. Children can also use related facts to count in 20 p coins.

Children do not convert between pounds and pence, therefore children will need to recognise the 50 p coin but they will not count up in 50 p coins.

Mathematical Talk

What is different about the coins you have counted?

Is the group with the most coins always the biggest amount? Why?

What do you notice about the totals?

Are silver coins always worth more than copper coins?

What different ways can you count the coins? Which is the quickest way?

Varied Fluency

- **Count the money.**

 - 10 p
 - 10 p
 - 10 p
 - 10 p

- **Use <, > or = to compare the money.**

- **Count the money.**

 - 10 p
 - 10 p
Count Money - Pence

Reasoning and Problem Solving

Jack selects four of these coins.

He can use the coins more than once.

What total could he make?

What is the lowest total?

What is the greatest total?

Example answers:

20 p, 10 p, 10 p and 1 p makes 41 p.

5 p, 5 p, 5 p and 5 p makes 20 p.

1 p, 20 p, 5 p and 2 p makes 28 p.

The lowest total would be 1 p, 1 p, 1 p and 1 p, makes 4 p.

The greatest total would be 20 p, 20 p, 20 p and 20 p makes 80 p.

Draw coins to make the statements correct.

For the first one, any answer showing less than 30 p on the right is correct. E.g. two 10 p coins.

For the second one, any answer showing less than 25 p on the left. E.g. three 2 p coins.
Count Money - Pounds

Notes and Guidance

Children will continue counting but this time it will be in pounds, not pence. The £ symbol will be introduced. Children must be aware that both coins and notes are used to represent amounts in pounds. Children will count in £1, £2, £5, £10 and £20s. In this year group, children work within 100, therefore they will not count in £50s.

Mathematical Talk

Do the notes have a greater value than the coins?

Which is the hardest to count? Which is the easiest? Why?

What do you notice about the amounts?

Does it matter which side the equals sign is?

Can you find the total in a different way?

Varied Fluency

Count the money.

£___ =

£___ =

Complete the bar models.

£30

Match the money to the correct total.

£25 £60 £10

Which is the odd one out? Explain why.
Ron thinks he has £13
No, because three £2 coins make £6
£10 and £6 is equal to £16
He has mistaken his £2 coins for £1 coins.

Is he correct?
Explain your answer.

Explain the mistake.

£2, £4, £6, £7, £8, £10

£7 is the mistake. It is an odd number. The 2 times table are all even.

When counting in £2s, we would say £2, £4, £6, £8, £10
Block 3 - Number

Theme 3 - Equal groups
Making Equal Groups

Notes and Guidance

Children begin by using stories which link to pictures and concrete manipulatives to explore making equal groups and write statements such as ‘there are ___ groups of ____.’ They will recognise and explain how they know when they are equal or not. Children see equal groups that are arranged differently so they understand that the groups look different but can still be equal in number.

At this stage children do not explore multiplication formally.

Mathematical Talk

How do I know that the groups are equal? What does equal mean?

How many pencils are there in each pot? How can I complete the sentence to describe the groups?

What’s the same and what’s different?

Are Josh’s groups equal or unequal? How can we make them equal?

Varied Fluency

Are the groups equal or unequal? Write a label for each.

Complete the sentences

There are ___ groups of ___ pencils.

There are ___ groups of ___ flowers.

Josh is drawing equal groups of 3

Complete his drawing.
Making Equal Groups

Reasoning and Problem Solving

Dora and Rosie are making hay bundles. Who has made equal groups?

Possible answer:
Dora has made equal groups because she has 3 groups of 3 hay bundles. Rosie has two unequal groups.

Explain how you know.

Use concrete materials or pictures to complete the questions.

Alex has 4 equal groups. Show me what Alex's groups could look like.

Whitney has 3 unequal groups. Show me what Whitney's groups could look like.

Children will show 4 groups where there are the same amount in each group for Alex and 3 groups that are unequal for Whitney.

Encourage children to do this in more than one way.
Add Equal Groups

Children use equal groups to find a total. They focus on counting equal groups of 2, 5 and 10 and explore this within 50.
Children could begin by linking this to real life, for example animal legs, wheels, flowers in vases etc.
Stem sentences alongside number sentences can help children link the calculation with the situation. Ensure children have the opportunity to say their sentences aloud.

Mathematical Talk

How many apples are there in each bag?
Do all of the bags have an equal number of apples?
How many equal groups can you see?

How can we represent this with counters/cubes/on a number line/in a number sentence etc?

What other equipment could you use to represent your pattern? What’s the same? What’s different?

Which is more, 3 groups of 10 or 4 groups of 5? Prove why.

Varied Fluency

How many wheels altogether?

2 + 2 + 2 + 2 + 2 =

How many fingers altogether?

5 + 5 + 5 =

How many apples are there? Complete the sentences.

5 + 5 + 5 = ___
There are ___ apples.
There are ___ groups of ___ apples which is equal to ___

How many fish are there?
Complete the sentences.

Can you show this using ten frames?

___ + ___ + ___ = ___
There are ___ fish.
Add Equal Groups

Reasoning and Problem Solving

Eva and Whitney are making equal groups of bread rolls.

Possible answer: I agree with both.
They are counting in groups of 10 so they need one more group of 10

We need one more group to make 40

We need 10 more rolls to make 40

Who do you agree with? Explain why.

Rosie and Eva have equal groups of either 2, 5 or 10

Each of their totals is less than 40

Rosie has 5 equal groups.
Eva has 3 equal groups.

Eva’s total is more than Rosie’s total.

What could they be counting in?

Use equipment to help you.

Possible answers:
Rosie: 2 + 2 + 2 + 2 + 2 = 10
Eva: 5 + 5 + 5 = 15

Rosie: 5 + 5 + 5 + 5 + 5 = 25
Eva: 10 + 10 + 10 = 30

Rosie: 2 + 2 + 2 + 2 + 2 = 10
Eva: 10 + 10 + 10 = 30
Recognise Equal Groups

Notes and Guidance

Children describe equal groups using stem sentences to support them. It is important that children know which groups are equal and unequal, and why they are equal or unequal. The addition and multiplication symbols are not used within this small step but use of the language of addition and multiplication will support them in understanding repeated addition and multiplication. The examples included refer to the times tables facts that Year 2 children need to know.

Mathematical Talk

What does the 2 represent? What does the 3 represent?

What does the 5 represent? What does the 2 represent?

I have ___ equal groups, with ___ in each group. Which image am I describing?

Why are these groups equal/unequal?

Varied Fluency

Complete the stem sentences.

There are ___ equal groups with ___ in each group.

Complete the sentences.

There are ___ equal groups with ___ in each group.

There are ______ baguettes altogether.

Describe the equal groups.

What is the same and what is different in each group?
Recognise Equal Groups

Reasoning and Problem Solving

Which group of money is the odd one out?

1. The bags with 5 p in each because the 2 ps and 1 ps have 4 p in each group.

Sort into equal and unequal groups.

<table>
<thead>
<tr>
<th>Equal Groups</th>
<th>Unequal Groups</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Create your own picture to go in each column.

Spot the mistake.

Alex says, “There are 10 equal groups with 2 in each group. There are ten 2s.”

Hearts and dots in unequal groups.
Stars and squares in equal groups.

There are 2 equal groups with 10 in each group.
There are two 10s.
Make Equal Groups

Notes and Guidance

Children should be able to make equal groups to demonstrate their understanding of the word ‘equal’.

With the examples provided to the children, it is important that they are exposed to numerals and words, as well as multiple representations.

Mathematical Talk

How else could you represent these in equal groups?

How many ways can you represent this?

How have you grouped your items?

Varied Fluency

The Base 10 shows six equal groups with ten in each group. There are six tens.

How else can you represent these as equal groups?

How many ways can you represent ‘four equal groups with three in each group’?

What else do we need to show ‘five 3s’?

How else can we show five equal groups with 3 in each group? Compare your answer with a partner.
Make Equal Groups

Reasoning and Problem Solving

Has Eva shown the equal groups correctly?

Children to draw or make 3 towers with 2 in each tower.

Draw or use cubes to show what Eva should have done.

How can you make the groups equal?

Various answers e.g. move one star from right to left box. Any answer that makes them equal.

Match the equal groups.

<table>
<thead>
<tr>
<th>Three 5s</th>
<th>Two 10s</th>
<th>Two 3s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sweets, squares, two 3s.</td>
<td>Dice, cubes, three 5s.</td>
<td>Coins, number pieces, two 10s.</td>
</tr>
</tbody>
</table>
Children begin to connect equal groups to repeated addition. At this point children have added 3 one digit numbers together, therefore they can add up to 3 equal groups when each group is any one digit number.

If there are more than 3 equal groups, the examples must be limited to 2s, 5s, 10s and 3s.

What do the two 3s represent?
Why are we using the addition symbol?
How else can we show the equal groups?
What is the total?

Complete:
There are ___ equal groups with ___ in each group.
There are ___ 3s.
___ + ___ = 6

Complete:
There are ___ equal groups with ___ in each group.
There are three ___ s.
___ + ___ + ___ = 12

Complete the table.
True or False?

5 + 5 = 2 + 2 + 2 + 2 + 2

This is true because they are both equal to 10 but the groups look different.

Draw an image or use cubes to help you explain your answer.

To the left of the ‘equal to’ sign are 2 equal groups of 5, and to the right of the ‘equal to’ sign are 5 equal groups of 2.

Which one does not belong?

Two 5s

Ten

5 + 5

What do we need to change to make them all represent the same?

The three 5s do not belong. We would have to take away one five.
The Multiplication Symbol

Notes and Guidance

Children are introduced to the multiplication symbol for the first time. They should link repeated addition and multiplication together, using stem sentences to support their understanding. They should also be able to interpret mathematical stories and create their own involving multiplication. The use of concrete resources and pictorial representations is still vital for understanding.

Mathematical Talk

What does the 3 represent? What does the 6 represent?

What does ‘lots of’ mean?

Does 18 = 3 × 6 mean the same?

How is 6 + 6 + 6 the same as 3 × 6? How is it different?

Varied Fluency

Complete the sentences to describe the equal groups.

\[\begin{array}{ccc}
\text{ } & \text{ } & \\
\end{array} \]

\[___ + ___ + ___ = 18 \]

\[___ \times ___ = 18 \]

There are ___ equal groups with ___ in each group.

There are three ___.

Complete:

<table>
<thead>
<tr>
<th>Three 2s</th>
<th>Draw It</th>
<th>Addition</th>
<th>Multiplication</th>
</tr>
</thead>
<tbody>
<tr>
<td>There are 3 equal groups with 2 in each group.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Complete:

<table>
<thead>
<tr>
<th>Addition</th>
<th>Multiplication</th>
<th>Story</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 + 10 + 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 × 5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

©White Rose Maths
The Multiplication Symbol

Reasoning and Problem Solving

Is Mo correct? Explain why.

- **Is Mo correct? Explain why.**

 3 + 3 + 3 = 3 \times 3

 He is correct because

 $3 + 3 + 3 = 9$

 and $3 \times 3 = 9$

Draw an image to help you.

<table>
<thead>
<tr>
<th>Use $<$, $>$ or $=$ to make the statements correct.</th>
<th>3 \times 5</th>
<th>5 + 5 + 5 + 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 \times 2</td>
<td>2 + 2</td>
<td></td>
</tr>
<tr>
<td>10 \times 2</td>
<td>5 + 5 + 5</td>
<td></td>
</tr>
</tbody>
</table>

Think of a multiplication to complete:

$6 + 6 + 6 > _ \times _$

The total is 12, what could the addition and multiplication be?

- Any two numbers which multiply together to give an answer of less than 18

 - $6 + 6 = 2 \times 6$
 - $2 + 2 + 2 + 2 + 2 + 2 = 6 \times 2$
 - $3 + 3 + 3 + 3 = 4 \times 3$
 - $4 + 4 + 4 = 3 \times 4$
 - $12 = 1 \times 12$
 - $1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 = 12 \times 1$

©White Rose Maths
Multiplication from Pictures

Notes and Guidance

Children will use the multiplication symbol and work out the total from pictures.

They should also be able to interpret a multiplication word problem by drawing images to help them solve it.

Coins could be used within this small step too.

Mathematical Talk

What does the 4 represent?
What does the 3 represent?
What does the 12 represent?
Can you think of your own story for $3 \times 4 = 12$?

Varied Fluency

Complete:

___ \times ___ = ___
___ lots of 3 = ___
___ multiplied by ___ = 12

Complete:

4 lots of 3

\circ \circ \circ

= $1 \times ___$

Complete the table.

<table>
<thead>
<tr>
<th>Picture</th>
<th>Multiplication</th>
<th>Sentence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$4 \times 10 = 40$</td>
<td>4 lots of 10 is equal to 40</td>
</tr>
<tr>
<td></td>
<td>$35 = 7 \times 5$</td>
<td>6 lots of 3 is equal to 18</td>
</tr>
</tbody>
</table>
Multiplication from Pictures

Reasoning and Problem Solving

<table>
<thead>
<tr>
<th>Task</th>
<th>Calculation/Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>There are four baskets.</td>
<td>The image could be 4 circles with 3 dots in each.</td>
</tr>
<tr>
<td>There are three dolls in each basket.</td>
<td>The calculation: 4 × 3 = 12</td>
</tr>
<tr>
<td>How many dolls are there altogether?</td>
<td>Stories with 4 groups and 10 in each group, for example:</td>
</tr>
<tr>
<td>Draw an image and write a calculation to represent the problem.</td>
<td>Four tables with ten children on each table. Four purses with 10p in each purse.</td>
</tr>
<tr>
<td>Write a story for the calculation 4 × 10</td>
<td>2 × 5</td>
</tr>
<tr>
<td>Draw an image to illustrate your story.</td>
<td>5 + 5</td>
</tr>
<tr>
<td></td>
<td>5 × 2</td>
</tr>
</tbody>
</table>

Each calculation could explain the image.

There are 2 groups with 5 people in each group.

There are 5 people in one group and 5 in the other.

There are 5 lots of 2 people.
Make Arrays

Notes and Guidance

Children begin to make arrays by making equal groups and building them up in columns or rows.

They use a range of concrete and pictorial representations alongside sentence stems to support their understanding.

Children also explore arrays built incorrectly and recognise the importance of columns and rows.

Mathematical Talk

How many equal groups do I have? How many in each group? Can I represent my apples with counters?

What is the difference between columns and rows? How many counters in each row? How many counters in each column?

How can I record my array with a number sentence?

Varied Fluency

Build an array with counters to represent the apples. Complete the sentences.

There are ____ apples in each row.
There are ____ rows.
____ + ____ + ____ = ____
There are ____ apples altogether.

Complete the table.

<table>
<thead>
<tr>
<th>Array</th>
<th>Description - columns</th>
<th>Description - rows</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5 columns, 2 cookies in each column</td>
<td>2 rows, 5 cookies in each row</td>
<td>2 + 2 + 2 + 2 + 2 = 10, 5 + 5 = 10</td>
</tr>
<tr>
<td></td>
<td>___ columns, ___ donuts in each column</td>
<td>___ rows, ___ donuts in each row</td>
<td></td>
</tr>
<tr>
<td></td>
<td>___ columns, ___ fish in each column</td>
<td>___ rows, ___ fish in each row</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 columns, 5 cupcakes in each column</td>
<td>5 rows, 5 cupcakes in each row</td>
<td></td>
</tr>
</tbody>
</table>
Make Arrays

Reasoning and Problem Solving

<table>
<thead>
<tr>
<th>Amir and Whitney are making arrays.</th>
<th>Possible answer: Whitney has made a mistake because her array is not in columns. There are an unequal amount of squares in each row.</th>
<th>Eva begins to make an array with 40 counters. She has finished her first row and her first column. Complete her array.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Possible answer: They are both right. Teddy has counted the columns. Alex has counted the rows.</td>
<td>Possible answer: Array showing 10 + 10 + 10 + 10 = 40</td>
</tr>
<tr>
<td>Who has made a mistake? Explain why.</td>
<td>Write two different number sentences to describe the finished array.</td>
<td>Or 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 = 40</td>
</tr>
<tr>
<td>Teddy and Alex are writing number sentences to describe the array.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Amir: $4 + 4 + 4 + 4 + 4 = 20$
- Whitney: $5 + 5 + 5 + 5 = 20$
- Teddy: $4 + 4 + 4 + 4 + 4 = 20$
- Alex: $5 + 5 + 5 + 5 = 20$
Making Doubles

Notes and Guidance

Children explore doubling with numbers up to 20. Reinforce understanding that ‘double’ is two groups of a number or an amount. Children show and explain what doubling means using concrete and pictorial representations.

They record doubling using the sentence, ‘Double ___ is ___’ and use repeated addition to represent doubles in the abstract. They look at representations to decide whether that shows doubling or not.

Mathematical Talk

Can you sort these representations in to doubles and not doubles? How do you know they’ve been doubled?

What comes next in my table, why?

How can we show the double differently?

If double 2 is 4, what is double 20? What is the largest double we can roll on a normal dice?

Varied Fluency

Circle the representations which have been doubled:

Take a number piece and double it. Complete the sentence.

Double ____ is ___

Complete and continue the table.

<table>
<thead>
<tr>
<th>Build</th>
<th>Represent</th>
<th>Add</th>
<th>Double</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1 + 1 = 2</td>
<td>Double 1 is 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 + 2 = ___</td>
<td>Double 2 is ___</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 + 3 = ___</td>
<td>Double 3 is ___</td>
</tr>
<tr>
<td></td>
<td></td>
<td>___ + ___ = ___</td>
<td>Double 4 is ___</td>
</tr>
</tbody>
</table>
Making Doubles

Reasoning and Problem Solving

Louise doubles her donuts. The picture shows what she had after she doubled her donuts.

Whitney
Louise started with 4 and ended with 8 donuts.

Eva
Louise started with 8 and ended with 16 donuts.

Mo
Louise started with 2 and ended with 4 donuts.

Who do you agree with? Explain why.

Possible answer:
Whitney is correct because the image shows what she was left with. She had 8 after she doubled and double 4 is 8

Complete the table by doubling each number.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Possible answer:
The doubles increase by 2 each time.
The doubles are all even.
The doubles end in 2, 4, 6, 8 or 0

What patterns do you notice?
Use Arrays

Notes and Guidance

Children explore arrays to see the commutativity of multiplication facts e.g. $5 \times 2 = 2 \times 5$

The use of the array could be used to help children calculate multiplication statements.

The multiplication symbol and language of ‘lots of’ should be used interchangeably.

Mathematical Talk

Where are the 2 lots of 3?

Where are the 3 lots of 2?

What do you notice?

What can we use to represent the eggs?

Can you draw an image?

Varied Fluency

On the image, find 2×5 and 5×2

Can you represent this array using another object?

Complete the number sentences to describe the arrays.

2×3 and $_ \times _$

$_ \times _$ and $_ \times _$

Draw an array to show:

$4 \times 5 = 5 \times 4$

3 lots of 10 = 10 lots of 3
Use Arrays

Reasoning and Problem Solving

<table>
<thead>
<tr>
<th>With 12 cubes, how many different arrays can you create?</th>
<th>1 × 12 = 12 × 1</th>
<th>Find different ways to solve six lots of three.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Once you have created your array complete:</td>
<td>2 × 6 = 6 × 2</td>
<td>Count in 3s</td>
</tr>
<tr>
<td></td>
<td>3 × 4 = 4 × 3</td>
<td>3 lots of 3 add 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 × 3 add 1 × 3 etc.</td>
</tr>
</tbody>
</table>

Part of this array is hidden.

- 4 × 2
- 5 × 2
- 6 × 2
- 7 × 2

The total is less than 16

What could the array be?

©White Rose Maths
Block 3 - Number

Theme 5 – Times tables
The 2 Times-Table

Notes and Guidance

Children should be comfortable with the concept of multiplication so they can apply this to multiplication tables.

Images, as well as number tracks, should be used to encourage children to count in twos.

Resources such as cubes and number pieces are important for children to explore equal groups within the 2 times-table.

Mathematical Talk

If 16 p is made using 2 p coins, how many coins would there be?

How many 2s go into 16?

How can the images of the 5 bicycles help you to solve the problems?

Varied Fluency

Count in 2s to calculate how many eyes there are.

There are ____ eyes in total.

____ × ____ = ____

Complete the number track.

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4</td>
<td></td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>14</td>
<td>16</td>
<td>18</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
</tr>
</tbody>
</table>

How many wheels are there on five bicycles?

If there are 14 wheels, how many bicycles are there?
The 2 Times-Table

Reasoning and Problem Solving

<table>
<thead>
<tr>
<th>Fill in the blanks.</th>
<th>2</th>
<th>10</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 × ___ = 6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>___ × 2 = 20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>___ = 8 × 2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tommy says that 10 × 2 = 22			
Is he correct?			
Explain how you know.			

<table>
<thead>
<tr>
<th>Eva says,</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Every number in the 2 times-table is even.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Is she correct? Explain your answer.</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes, because 2 is even, and the 2 times-table is going up in 2s. When you add two even numbers the answer is always even.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The 5 Times-Table

Notes and Guidance

Children can already count in 5s from any given number. They will also have developed understanding of the 2 times-table.

This small step is focused on the 5 times table and it is important to include the use of zero. Children should see the = sign at both ends of the calculation to understand that it means ‘equals to’.

Mathematical Talk

If there are 30 petals, how many flowers? Can you count in 5s to 30? How many 5s go into 30?

How many 5s go into 35?

What does each symbol mean?

Varied Fluency

- How many petals altogether?

- Write the calculation.

- There are 35 fingers. How many hands?

___ × 5 = 35

- Use <, > or = to make the statements correct.

2 × 5 〇 5 × 2

3 × 2 〇 4 × 5

10 × 5 〇 5 × 5

©White Rose Maths
The 5 Times Table

Reasoning and Problem Solving

<table>
<thead>
<tr>
<th>Is Mo correct?</th>
<th>Mo is incorrect because some of the multiples of the five times table are even, e.g. 10, 20, 30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explain your answer.</td>
<td>Every number in the 5 times table is odd.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tubes of tennis balls come in packs of 2 and 5</th>
<th>Whitney could have: 4 packs of 5 and 1 pack of 2, 11 packs of 2 and 0 packs of 5, 2 packs of 5 and 6 packs of 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whitney has 22 tubes of balls.</td>
<td>What's the same and what is different about their bar models?</td>
</tr>
<tr>
<td>How many of each pack could she have?</td>
<td>Draw your own bar model to represent 4×5</td>
</tr>
<tr>
<td>How many ways can you do it?</td>
<td>The total shown is the same. Tommy's bar shows seven lots of 5 whereas Rosie's bar show five lots of 7</td>
</tr>
</tbody>
</table>

Children can choose either way to represent 4×5.

<table>
<thead>
<tr>
<th>Tommy and Rosie have both drawn bar models to show 7×5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tommy's Bar</th>
<th>Rosie's Bar</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 5 5 5 5 5 5</td>
<td>7 7 7 7 7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>35</th>
</tr>
</thead>
</table>

©White Rose Maths
The 10 Times-Table

Notes and Guidance

Children have counted in 10s from any given whole number. This small step is focused on the 10 times-table and it is important to include the use of zero.

Children should see the = sign at both ends of the calculation to understand what it means.

Mathematical Talk

What if there were 10 packs of crayons?

If there are 50 crayons altogether, how many packets are there? How do you know?

How many tens go into 30? Can you count in 10s to 30?

What does greater than mean? What does less than mean?

Varied Fluency

How many crayons are there altogether?

There are ____ crayons altogether.

___ × 10 = ___

Altogether there are 30 bottles, how many walls are there?

___ × 10 = 30

Think of a multiplication fact for 10s to go in each box.

2 × 10

9 × 10

0 × 10

2 × 10

smallest
greatest

smallest
greatest

smallest
greatest

smallest
greatest
The 10 Times-Table

Reasoning and Problem Solving

On sports day, Jack runs 10 metres, 7 times.

Which of these calculations do not describe this word problem?

- 10 + 7
- 7 × 10
- 7 + 7 + 7 + 7 + 7 + 7 + 7 + 7 + 7
- 10 + 10 + 10 + 10 + 10 + 10 + 10

Explain why.

10 + 7 is incorrect because he has run 10 metres, 7 times, not 10 metres then 7 metres.

Some Base 10 is hidden.

The total is less than 100

What could the calculation be?

___ × 10 = ___

Tim says it could be 10 × 10
Is he correct? Explain your answer.

It could be
6 × 10 = 60
7 × 10 = 70
8 × 10 = 80
9 × 10 = 90

It can’t be 10 × 10 because 100 is not less than 100, it is equal to 100.