Summer Scheme of Learning

Year 1/2

#MathsEveryoneCan

2019-20
In this document, you will find suggestions of how you may structure a progression in learning for a mixed-age class.

Firstly, we have created a yearly overview.

For each block of learning, we have grouped the small steps into themes that have similar content. Within these themes, we list the corresponding small steps from one or both year groups. Teachers can then use the single-age schemes to access the guidance on each small step listed within each theme.

The themes are organised into common content (above the line) and year specific content (below the line). Moving from left to right, the arrows on the line suggest the order to teach the themes.

Each term has 12 weeks of learning. We are aware that some terms are longer and shorter than others, so teachers may adapt the overview to fit their term dates.

The overview shows how the content has been matched up over the year to support teachers in teaching similar concepts to both year groups. Where this is not possible, it is clearly indicated on the overview with 2 separate blocks.
How to use the mixed-age SOL

Here is an example of one of the themes from the Year 1/2 mixed-age guidance.

Subtraction

<table>
<thead>
<tr>
<th>Year 1 (Aut B2, Spr B1)</th>
<th>Year 2 (Aut B2, B3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>How many left? (1)</td>
<td>Subtract 1-digit from 2-digits</td>
</tr>
<tr>
<td>How many left? (2)</td>
<td>Subtract with 2-digits (1)</td>
</tr>
<tr>
<td>Counting back</td>
<td>Subtract with 2-digits (2)</td>
</tr>
<tr>
<td>Subtraction - not crossing 10</td>
<td>Find change - money</td>
</tr>
<tr>
<td>Subtraction - crossing 10 (1)</td>
<td></td>
</tr>
<tr>
<td>Subtraction - crossing 10 (2)</td>
<td></td>
</tr>
</tbody>
</table>

In order to create a more coherent journey for mixed-age classes, we have re-ordered some of the single-age steps and combined some blocks of learning e.g. Money is covered within Addition and Subtraction.

The bullet points are the names of the small steps from the single-age SOL. We have referenced where the steps are from at the top of each theme e.g. Aut B2 means Autumn term, Block 2. Teachers will need to access both of the single-age SOLs from our website together with this mixed-age guidance in order to plan their learning.

Points to consider

- Use the mixed-age schemes to see where similar skills from both year groups can be taught together. Learning can then be differentiated through the questions on the single-age small steps so both year groups are focusing on their year group content.
- When there is year group specific content, consider teaching in split inputs to classes. This will depend on support in class and may need to be done through focus groups.
- On each of the block overview pages, we have described the key learning in each block and have given suggestions as to how the themes could be approached for each year group.
- We are fully aware that every class is different and the logistics of mixed-age classes can be tricky. We hope that our mixed-age SOL can help teachers to start to draw learning together.
<table>
<thead>
<tr>
<th>Week 1</th>
<th>Week 2</th>
<th>Week 3</th>
<th>Week 4</th>
<th>Week 5</th>
<th>Week 6</th>
<th>Week 7</th>
<th>Week 8</th>
<th>Week 9</th>
<th>Week 10</th>
<th>Week 11</th>
<th>Week 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autumn</td>
<td></td>
</tr>
<tr>
<td>Number: Place Value</td>
<td>Number: Addition and Subtraction</td>
<td>Number: Year 1: Place Value to 50 and Multiplication</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y1 - Numbers to 20</td>
<td>Year 1- Numbers within 20 (including recognising money)</td>
<td>Year 2: Multiplication</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y2 - Numbers to 100</td>
<td>Year 2- Numbers within 100 (including money)</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td></td>
</tr>
<tr>
<td>Number: Year 1: Division & consolidation</td>
<td>Year 1: Place Value to 100</td>
<td>Geometry: Year 1: Fractions and Consolidation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year 2: Division</td>
<td>Year 2: Statistics</td>
<td>Year 2: Properties of Shape</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Summer</td>
<td></td>
</tr>
<tr>
<td>Year 2:Problem solving</td>
<td>Year 1: Place Value recap</td>
<td>Year 2: Consolidation and Investigations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measurement: Year 1: Weight and Volume</td>
<td>Year 2: Mass, Capacity and Temperature</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

©White Rose Maths
In this section, content from single-age blocks are matched together to show teachers where there are clear links across the year groups. Teachers may decide to teach the lower year’s content to the whole class before moving the higher year on to their age-related expectations. The lower year group is not expected to cover the higher year group’s content as they should focus on their own age-related expectations.

In this section, content that is discrete to one year group is outlined. Teachers may need to consider a split input with lessons or working with children in focus groups to ensure they have full coverage of their year’s curriculum. Guidance is given on each page to support the planning of each block.

The themes should be taught in order from left to right.

Year 1 content

Year 2 content
Year 1/2 | Summer Term | Week 2 to 3 – Time

Time

Common Content

Telling the time
- Year 1 (Sum B6)
 - Time to the hour
 - Time to the half hour
- Year 2 (Sum B3)
 - O’clock and half past
 - Quarter past and quarter to
 - Telling time to 5 minutes

Write and compare time
- Year 1 (Sum B6)
 - Writing time
 - Comparing time
- Year 2 (Sum B3)
 - Find durations of time
 - Compare durations of time

Year Specific

Ordering events
- Year 1 (Sum B6)
 - Before and after
 - Dates

Hours and days
- Year 2 (Sum B3)
 - Hours and days

Children sequence events and can use language related to days of the week and months of the year.

They measure durations of time and compare the length of different events.

Children in Year 1 focus on telling the time to the hour and half hour while Year 2 progress to using quarter to, quarter past and time to the nearest five minutes.

Time needs to be revisited on a daily basis so use the routines of the day to practice telling the time.
Before and After

Notes and Guidance

Children are introduced to key vocabulary related to time.

They use before and after to describe, sort and order events.

Building on this, they use first and next to describe an order of events. When talking about the day, children use the language: morning, afternoon and evening.

Mathematical Talk

Explain why you have placed the pictures before or after each other?
Could any of the pictures have gone in both?
Which activities do you do before school?
Which activities do you do after school?
What do you do in the morning?
What do you do in the afternoon?
What do you do in the evening?

Varied Fluency

Sort the activities into **before** and **after** school.

Can you think of one more activity for each group?
Can you sort the activities into three groups labelled **morning**, **afternoon** and **evening**?

Tommy is drinking a bottle of orange juice.
Match the words to the bottles to order them.

Describe a special day to a friend. Use the words: before, after, first, next, morning, afternoon, evening.
Dora is describing her day.

First, I went to the park. After lunch, I went to the cinema. Before the cinema, I went to a café for lunch.

Can you draw and label pictures to order Dora’s day?

Children draw a picture so the ‘First’ box shows the park, the ‘Next’ box shows lunch and the ‘Then’ box shows cinema.

Draw pictures to show what could have happened before and after.

Before

After

Children draw pictures to show what could have happened. They might show someone kicking the ball in the ‘Before’ box and the goldfish bowl smashing in the ‘After’ box.
Fill in the missing days of the week and complete the sentences.

- Today is Wednesday, yesterday was ______.
- Yesterday was Monday, today is ______.
- Today is Saturday, tomorrow is ______.
- Tomorrow is ______, today is Wednesday.

Use a calendar to look at the names of the months.
Discuss special dates in different children’s lives e.g. birthdays, celebrations, holidays.
Complete the sentences.

My birthday is in ____________.
In ________, I went to ____________.
Eva is practising chanting the months of the year.

She says, January, February, May, April, March, July, June, August, September, November, October, December.

Eva is incorrect. Correct her mistakes.

January February March April May June July August September October November December

The 5th June is a Wednesday. What day is the 10th June?

Sort the days of the week into school days or non-school days.

School days – Monday, Tuesday, Wednesday, Thursday, Friday
Non-school days – Saturday, Sunday

At school
Not at school

The 10th June is a Monday.
Children are introduced to telling the time to the hour using an analogue clock. They learn the language of o’clock and understand the hour hand is the shorter hand and the minute hand is the longer hand. Children read the time to the hour and know when the minute hand is pointing upwards to the number 12 it is an o’clock time, and understand that they need to look at the hour hand to see which hour it is.

Mathematical Talk

There are two hands on the clock. What is the same about each hand? What is different about each hand compared to the other?

Looking at all three clock faces, what is the same about the hands? What is different about them?

Where will the hour hand be at ____? Where will the minute hand be at ____? Can you show me ______?

Notes and Guidance

Time to the Hour

Varied Fluency

Match the times to the clocks.

- 9 o’clock
- Two o’clock
- 5 o’clock

Complete the times.

- The time is ___ o’clock
- The time is ___ o’clock

Draw the hour hand and minute hand on clock faces to show the times:

- Eight o’clock
- 1 o’clock
- Twelve o’clock
Amir has read the hour hand and the minute hand the wrong way round. At three o'clock the longer minute hand should be pointing at 12 and the shorter hour hand should be pointing at 3.

The time is 3 o'clock.

Can you spot Amir’s mistake?

Is Alex correct? Explain your reasoning.

When it is 11 o'clock both hands point at 11

Alex is incorrect. If the time is eleven o'clock, the hour hand should be pointing at 11 and the minute hand should be pointing at 12.
Children are introduced to telling the time to the half hour. They learn the language half past.

They understand that, at half past the hour, the minute hand has travelled half way around the clock from the twelve and is pointing at the six and the hour hand is half way between the hours e.g. half way between one and two or half way between nine and ten.

Which is the hour hand? Which is the minute hand? How do you know?

Where does the minute hand point to at half past? Can you see that the minute hand has travelled halfway around the clock? Could you show this to your partner?

Can you show me ______?
Time to the Half Hour

Reasoning and Problem Solving

Can you spot Tommy’s mistake?

Tommy has read the minute hand as showing the number of minutes past the hour, rather than understanding that the minute hand pointing to 6 means half past. The time is half past one.

Read the instructions and draw the hands on the clock.

- The minute hand is pointing at the six.
- The hour hand is half way between 10 and 11

What time is it?

The time is 6 past 1

The time is half past 10
O'clock and Half Past

Notes and Guidance

Children recap the Year one objective of telling the time to the hour and half past the hour.

Children should be given the opportunity to create times using individual clocks with moveable hands.

Children read and write times from clocks.

Mathematical Talk

What do the numbers represent on the clock face? Which is the hour hand? Which is the minute hand?

Where will the hour hand be at ____? Where will the minute hand be at ____? What do you notice about the minute hand at half past?

Can you show me ____?
O'clock and Half Past

Reasoning and Problem Solving

<table>
<thead>
<tr>
<th>Who is telling the time correctly?</th>
<th>Alex is correct. Dora has confused the minute hand with the hour hand. Amir has not noticed that the hour hand has not gone past 3 yet.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dora</td>
<td>The time is half past 6</td>
</tr>
<tr>
<td>Amir</td>
<td>The time is half past 3</td>
</tr>
<tr>
<td>Alex</td>
<td>The time is half past 2</td>
</tr>
</tbody>
</table>

Can you spot the mistakes they've made?

- Alex is incorrect. If the time is half past 11, the hour hand should be halfway between the 11 and 12.
- Is Alex correct? Explain your reasoning.
 - It is half past 11 so the hour hand should be on the 11.

Oh no! The minute hand has fallen off the classroom clock!

- Lunchtime is at 12:00
- Have the children missed their lunchtime?
 - Unfortunately, the children have missed their lunch. The hour hand is halfway between 12 and 1 and so the time is 12:30.
Children read and draw the times ‘quarter to’ and ‘quarter past’. They use their knowledge of fractions and turns to identify quarter past and quarter to. Children should recognise that the hour hand moves along with the minute hand. Therefore when the time is quarter past the hour, the hour hand will be just past the hour and when the time is quarter to, the hour hand will be just before the hour.

Where are the hands pointing to? Can we divide the clock face into four equal parts? Can we link this to fractions?
If the minute hand is pointing at 3, how many minutes have passed the hour?
If the minute hand is pointing at 9, how many minutes until the next hour?
Show me quarter past/to….

Look at the clocks.
Discuss how the minute hand has travelled. Identify when the time is quarter past the hour and quarter to the hour. Give the children individual clocks with moveable hands and ask them to make quarter to/past times.

Match the clocks to the correct time.

Complete the table.

<table>
<thead>
<tr>
<th>The minute hand is pointing to</th>
<th>The minute hand is pointing to three.</th>
</tr>
</thead>
<tbody>
<tr>
<td>The hour hand is just after</td>
<td>The hour hand is just after six.</td>
</tr>
<tr>
<td>The time is quarter ___ seven</td>
<td>The time is quarter past six.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>The minute hand is pointing to</th>
<th>The minute hand is pointing to nine.</th>
</tr>
</thead>
<tbody>
<tr>
<td>The hour hand is just before</td>
<td>The hour hand is just ____ twelve.</td>
</tr>
<tr>
<td>The time is quarter ___ two</td>
<td>The time is quarter to twelve.</td>
</tr>
</tbody>
</table>
Quarter Past & Quarter To

<table>
<thead>
<tr>
<th>Reasoning and Problem Solving</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quarter past is always later than quarter to.</td>
</tr>
</tbody>
</table>

Do you agree with Teddy? Explain why.

How many quarters of an hour are between 7 o'clock and 9 o'clock. Explain how you found the answer.

| It depends on the hour of the times given. For example: quarter to 12 is later than quarter past 11. If the hour remains the same then Teddy is correct. |

| The train to Blackpool leaves at quarter past and quarter to every hour. |

| Make a list of the times of the trains Oliver can catch if he gets to the train station between 2 o'clock and half past 4 |

| Oliver could catch the following trains: Quarter past 2, Quarter to 3, Quarter past 3, Quarter to 4, Quarter past 4 |

| There are 8 quarters of an hour between 7 o'clock and 9 o'clock. |
Children read and show analogue time to 5-minute intervals. Children should be confident at counting from 0 to 60 in steps of 5 so they can then apply this to counting around the clock in fives and use this method to work out what time is shown.

Children need to recognise that once the minute hand gets past 6 the time is described as ‘to’ the next hour, rather than ‘past’ the hour.

Mathematical Talk

How many minutes are there between each pair of numbers on a clock?
How many different ways can you count round the clock?
Where will the minute hand be at _____? Where will the hour hand be at _____?
How do we know whether it is a ‘past’ or a ‘to’ time?
Can you show _____ past/to _____?

Varied Fluency

Using a demonstration clock, ask the children to count round in minutes. When the minute-hand is pointing to a number, record how many minutes have passed the hour in a table. What do they notice? Will this pattern continue?

<table>
<thead>
<tr>
<th>Minute hand pointing to</th>
<th>Minutes past the hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>15</td>
</tr>
</tbody>
</table>

Show the children times to 5-minute intervals on a large clock. Ask the children to identify what time is being shown. Give the children individual clocks with moveable hands. Ask the children to make times to 5 minute intervals.

Mathematical Talk

How many minutes are there between each pair of numbers on a clock?
Telling Time to 5 Minutes

Reasoning and Problem Solving

Alex is correct. Dora has said the hour before not the next hour. Amir has confused his minute and hour hands.

Sophia finishes her Maths questions at quarter to 12
Each question takes her 5 minutes to complete.
What time does Sophia finish her Maths questions?

Who is correct? Explain your answer.

Rosie is incorrect. Four 5 minutes are the same as 20 minutes.

What time does Sophia finish her Maths questions?
Explain how you found the answer.

Sophia starts her Maths questions at 10 past 11
Sophia finishes her Maths questions at quarter to 12
Children may use a clock to count round seven lots of 5 minutes.

Children may do $5 \times 7 = 35$ and count 35 minutes round the clock.

Alex
It is ten to one.
Dora
It is ten past ten.
Amir
It is ten to two.
Alex
Four lots of 5 minutes is the same as quarter of an hour.
Rosie
Do you agree with Rosie? Explain why.
Block 2 – Time

Theme 3- Hours and days
Children learn that there are 24 hours in a day and 60 minutes in an hour. Children use clocks to convert minutes to hours and minutes. Children should be encouraged to use their knowledge of counting in fives to help them convert.

How many hours are there in a full day? How many minutes are in an hour and a half? How could we calculate this? Could we count in half an hours? How many half an hours are in one hour? How many half an hours will there be in two hours?

Starting from midnight show every hour on the clocks for a full day. There are [] hours in a day.

Using the clock, show how many minutes there are in 1 hour. 1 hour = [] minutes
How many minutes would there be in 2 hours?

Match the bars to the times.

- 60 minutes
- 60 minutes
- 60 minutes
- 60 minutes 10
- 90 minutes
- 70 minutes
- 120 minutes
- 2 hours
- 1 hour
I disagree because there are 12 hours am and 12 hours pm therefore equaling 24 hours in a day.

I agree. The hour hand will change but the minutes will stay the same.

There must be 12 hours in a day because we start from midnight and go up to 12 o'clock and then start again from 1.

The day starts at 12 o'clock and ends at 12 o'clock.

Here are Eva's calculations for working out how many hours there are in a day.

<table>
<thead>
<tr>
<th>12</th>
<th>6</th>
<th>12</th>
<th>6</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>1</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>2</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>3</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>4</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>11</td>
<td>5</td>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>

I counted them up, and there are 25 hours in a day.

What mistake has Eva made?

Eva has counted 12 o'clock three times.

The final twelve on her list is the start of the next day.

Do you agree with Tommy? Explain why.

Do you agree with Rosie? Prove it.

I agree. The hour hand will change but the minutes will stay the same.
Block 2 – Time

Theme 4- Write and compare time
Using a stopwatch, record how many times you can do these activities in 20 seconds.

- Star jumps
- Write your name
- Hops on the spot

Can you think of any activity which takes 20 seconds?

Would you measure the duration of the activities in seconds, minutes or hours? Sort the activities into three groups: seconds, minutes and hours.

- Brushing teeth
- Reading a book
- Saying the alphabet
- Holiday flight
- Playing outside
- Sleeping at night

Complete the sentences using seconds, minutes or hours.

- Playtime is about 20 _______ long.
- The school day is about 6 ______ long.
Are the units of time chosen sensible for these activities?

- A football match measured in seconds.
- A lap around the school playground measured in minutes.
- A birthday party measured in hours.

Explain your answers.

Not sensible - a football match is measured in minutes because to use seconds would involve very large numbers.

Dependent on the school playground, could be sensible, or it could be more sensible to measure in seconds.

Sensible - parties can last at least 2 hours.

Dora has a clock without an hour hand.

I agree, Dora can still measure time in minutes using her clock. The minute hand moving the distance from one increment to another shows one minute has passed.

I can measure how long it takes someone to run around the playground 10 times using my clock.

She says,

Do you agree with Dora?
Explain your answer.
Comparing Time

Notes and Guidance

Children compare amounts of time using the language faster, slower, earlier and later. They build on writing and measuring time by comparing different amounts of times using time language. Children understand that when someone wins a race the length of time will be shorter and if someone takes longer the length of time will be larger.

Teddy, Mo and Whitney are running a race. Here are their times.

Teddy - 52 seconds
Mo - 58 seconds
Whitney - 48 seconds

Use faster or slower to complete each sentence.
Teddy is ________ than Mo.
Teddy is ________ than Whitney.
Whitney is ________ than Mo.

Can you write any more sentences to describe the race using the words slower and faster?

Three planes are flying to Paris in the morning. Here are the times they arrive.

Plane A
Plane B
Plane C

Use earlier and later to complete the sentences.
Plane A is ________ than Plane B.
Plane B is ________ than Plane C.
Plane C is ________ than Plane A.

Which is longer: one hour, one minute or one second?

If I finish a race first, am I faster or slower than everyone else?

Can you think of a comparison where you use faster and slower in the same sentence?
e.g. A rabbit is faster than a tortoise but slower than a cheetah.

Mathematical Talk

Which is longer: one hour, one minute or one second?

If I finish a race first, am I faster or slower than everyone else?

Can you think of a comparison where you use faster and slower in the same sentence?
e.g. A rabbit is faster than a tortoise but slower than a cheetah.
Work in small groups. Complete the following activities and record how long it takes each person.

- Build a tower of ten bricks.
- Run a lap of the playground.
- Write your name five times.

Write three sentences about each activity using the words **slower** and **faster**.

Children will complete three sentences about each activity. They can then share the sentences with their groups and see how many different sentences they have created with altogether.

Five friends are going to a party. Use the clues to work out when each friend arrived.

Amir arrived later than Jack and Eva. Rosie arrived later than Amir but earlier than Ron. Eva arrived the earliest.

1. Eva
2. Jack
3. Amir
4. Rosie
5. Ron

<table>
<thead>
<tr>
<th>1<sup>st</sup></th>
<th>2<sup>nd</sup></th>
<th>3<sup>rd</sup></th>
<th>4<sup>th</sup></th>
<th>5<sup>th</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Eva</td>
<td>Jack</td>
<td>Amir</td>
<td>Rosie</td>
<td>Ron</td>
</tr>
</tbody>
</table>
Find Durations of Time

Notes and Guidance

Children identify the start and end time of an event. They use these times to work out how long an event lasted. Children should understand this is the duration of an event. Children use individual clocks and number lines to help them work out the duration of an event. They can count in steps of 5 minutes to help them.

Mathematical Talk

What is the start time? What is the end time? How can we show this on the clock? How long did the event last?

How did you work out the duration? Are there any other methods for working out duration?

Varied Fluency

How much time has passed from the start to end time?

```
Start | Duration | End
```

Complete the table.

<table>
<thead>
<tr>
<th>Start</th>
<th>End</th>
<th>Time passed</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Jack leaves school at quarter past 3
He arrives home at five to 4
How long was Iqbal’s journey?
The film could have lasted 40 minutes, but children may reason that most films last more than an hour, so it is more likely to be an hour and 40 minutes or two hours and 40 minutes.

Oh no! The hour hand has fallen off the class clock!

The clock shows the start and end time of a film.

How long do you think the film lasted?

Aimee is planning her birthday. She wants to plan something to do from 9am to 5pm.

Here are the things she wants to do:
- Visit the zoo (3 hours)
- Go to Pizza Palace (1 hour and a half)
- Have breakfast (half an hour)
- Play party games (1 hour)
- Watch a film (2 hours)

Create a timetable for Aimee’s day. Compare it to your friends – is it the same?

There are 8 hours in Aimee’s day so children could create different combinations for Aimee’s day.
Children compare times using ‘longer’ and ‘shorter’. They order times from longest to shortest and vice versa. Children then compare durations of time taken by particular events. They could explore ways to work out durations of time most efficiently, including using empty number lines and using their knowledge that there are 60 minutes in an hour.

Which is longer 2 minutes or 1 hour? How can you order the times? How many minutes does each TV show last? How can we count the minutes efficiently? How much longer is than? How can we efficiently work out the length of time each person works?

Circle the longest time.

Can you order the times from longest to shortest?

Use the table to complete the sentences.

<table>
<thead>
<tr>
<th>TV Show</th>
<th>Starts</th>
<th>Ends</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pop World</td>
<td>3 o’ clock</td>
<td>Twenty to 4</td>
</tr>
<tr>
<td>Animal Patrol</td>
<td>Half past 6</td>
<td>Five to 7</td>
</tr>
<tr>
<td>Super Cars</td>
<td>Quarter past 8</td>
<td>Five past 9</td>
</tr>
</tbody>
</table>

______________ is the shortest TV show.

______________ is longer than ___________ and ___________

Joe works from half past 10 until 3 o’ clock. Emma works from 9 o’ clock until half past 12. Who works the longest amount of time?
I do not agree with Teddy, because both films last exactly the same length of time – 1 hour and 30 minutes.

Rosie has an hour for her lunch break. If she takes 10 minutes to eat her lunch, does she have enough time to complete all of the playground activities?

<table>
<thead>
<tr>
<th>Activity</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skipping</td>
<td>7 minutes</td>
</tr>
<tr>
<td>Ball skills</td>
<td>10 minutes</td>
</tr>
<tr>
<td>Treasure hunt</td>
<td>21 minutes</td>
</tr>
<tr>
<td>Trim trail</td>
<td>19 minutes</td>
</tr>
</tbody>
</table>

How do you know?

Rosie doesn’t have time to complete all of the activities. Completing all of the activities would take 57 minutes. If she spends 10 minutes eating her lunch, she would only have 50 minutes left.